APPENDIX VI continued

Concentration	of	Calc	ium :	in ppm	Ł

Date	Well #1	#2	<u>#3</u>	#4	<u>#5</u>	<u>#7</u>
4-23-71	120	120				
4-30-71	134	124			-	
5-7-71	128	123				
5-14-71	130	122	59			
5-21-71	128 .	120				•
5-28-71	. 131	113	41			
6-9-71	100	90	25			
7-13-71	123	100				
7-22-71	114	96				
8-5-71	136	121				
8-10-71	145	126				
8-20-71	152	134				
8-25-71			30	90		
9-14-71	. 91	95	24			
10 ⁰ .11-71	142	129	28	95	5	61
10-19-71		58	24	94	12	115
11-5-71	138	121	29	108	29	94
2 -4-72	118	1:14	43	84	18	65
2-21-72	116	110	27	81	18	53
3-30-72	115	81	22	57	114	57
4-13-72	102	101	32	65 -	14	44

Concentration	of Magnesium	in ppm				
4-23-71	33	40				
4-30-71	35	39				
5-7-71	36	40				
5-14-71	35	38	25			
5-21-71	36	38				
5-28-71	34	36	20.			
6-9-71	34	37	23			
7-13-71	35	35				
7-22-71	38	38				
8-5-71	39	40				
8-10-71	35	36				-
8-20-71	36	3 6	•			
8-25-71			23	33		
9-14-71	33	33 .	23			
10-11-71	35	36	26	32	29	31
10-19-71		34	29	31	27	31
11-5-71	35	36	26	32	32	34

APPENDIX VI continued.

Par Par Var

Concentration of Zinc in ppm

Date	Well #1	. #2	<u>#3</u>	#4	<u>#5</u>	<u>#7</u>
4-23-71	3.3	1.7				•
4-30-71	2.2	2.8				
5-7-71	2.8	2.8				
5-14-71	11.8	2.2	0.4			
5-21-71	3.6	1.9				
5-28-71	3.6	2.6	0.2			
6-9-71	3.0 ·	3.4	0.5			
7-13-71	2.0	1.5				
7-22-71	2.4	1.9				
8-5-71	1.9	1.6				
	1.2	1.7				
8-10-71	3.0	2.0				•
8-20-71	3.0		0.9	2.6		
8-25-71 5 9- 14-71	10.2	1.8	9.2			
		5.0	1.8	2.7	8.2	2.7
10-11-71	5.1	2.4	2.3	0.8	1.5	0.7
\$10-19-71		1.5	0.6	0.4	.0.9	0.8
11-5-71	2.2		0.7	0.3	0.5	0.6
2-4-72	1.1	2.0	0.6	0.1	0.4	0.6
[†] 2-21-72	2.0	1.9		0.01	0.1	0.3
3-30-72	2.0	1.4	0.4	0.01	0.6	1.1
4-13-72	1.0	1.4	0.5	U.1	0.0	

		· ·		
	-		411 11 - 14-4	-mr/3
Concentration	ΛF	Ricarbonate	AIKETITITLY.	WK/ +
CONCENTTALIUM	O.T.	DICGIDONG		

Concentration	-		-			
7-13-71	480	412				
7-22-71	479	413				
8-5-71	484	416				
8-10-71	480	. 428				
8-20-71	469	440				
8-25-71			154	389		
9-2-71	479	435			275	
	474	445	147			
9-14-71	476	443	137	342	154	255
10-11-71	470	363	147	295	167	248
10-19-71	161	447	153	363	224	318
11-5-71	464	455	227	360	232	312
11-12-71	452		230	296	225	311
12-22-71	455	460		284	226	474
1-21-72	468	. 488	195	376	247	315
2-4-72	472	487	271		207	275
2-21-72	475	494	216	373		309
3-30-72	479	508	221	368	212	272
4-13-72	470	499	241	357	218	
4-25-72	468	500	256	309	220	322
5-19-72	342	340	222	262	206	284
6- 1-72	498	396	240	322	252	334
7-3-72	464	502	240	386	230	340

APPENDIX VI continued.

Concentration of	total	dissolved	solids	in	mg/l
------------------	-------	-----------	--------	----	------

Date	Well #1	<u>#2</u>	#3	#4	# 5	<u>#7</u>
7 40 70		-				
7-13-71	424	415				•
7-22-71	520	470				
8-5-71	528	492				
8-10-71	587	534				
8-20-71	531	532				•
8-25-71			288	520		
10-19-71		405	426	415	150	425
11-5-71	498	470	230	452	212	432

Concentration	on of Chlor	ides in m	g/1			
7-131	5.0	3.8	<u> </u>			
17-22-71	5.1	4.6	· ·			
, 8-5-71	5.4	4.2				
`8-10-71	7.0	6.4				
8-20-71	4.7	4.0		•		
8-25-71			2.4	11.4		
9-2-71	6.0	4.7	•		4.1	
10-11-71	7.2	4.6	2.6	11.0	2.5	20.8
11-5-71	7.1	4.2	1.0	12.7	4.1	20.8
11-12-71	6.9	4.5	1.6	13.4	3.9	21.5
12-5-71	7.1	3.7	1.8	11.3	4.6	22.5
12-22-71	6.8	4.5	0.9	12.8	2.8	22.8
1-21-72	5.9	3.3	1.4	12.3	3.1	23.8
2-4-72	7.2	2.8	1.6	11.1	3.3	23.1
2-21-72	7.6	3.0	1.4	11.4	2.5	22.7
3-30-72	7.2	4.6	0.4	10.7	3.1	22.0
4-13-72	7.9	3.7	0.7	10.7	3.7	22.4
4-26-72	9.7	5.2	1.6	12.2	2.2	22.0
5-19-72	5.5	3.0	1.7	13.8	2.9	22.6
5-30-72	9.4	4.2	2.9	14.6	4.2	22.4
6-16-72	9.2	3.0	2.0	13.2	2.7	19.2

Report of Chemical Monitoring Activities -Rosemount Toxic and Hazardous Waste Disposal Site

Fay Thompson, Department of Environmental Health and Safety

In 1971 a project was begun to monitor the quality of the ground water in the vicinity of the Rosemount Toxic and Hazardous Waste Disposal Site. Seven wells were dug surrounding the disposal site. These wells were sampled periodically for pH, bicarbonate, chloride, calcium, magnesium, zinc, and total dissolved solids.

In 1972 suction lysimeters were installed in the disposal pit itself as a means of intercepting soil moisture for analysis before it reached the ground water level. From analysis of these samples it became apparent that acids and metals were unlikely to cause any ground water contamination since they tended to remain in the top few feet of soil. Because of this discovery, the analyses of well water mentioned in the previous paragraph were discontinued.

On the other hand, organic solvents were moving quite readily through the soil and were found in high concentration at the 11 foot depth. No organics were detected in the wells at this time.

Late in 1973 several more lysimeters, reaching to considerably deeper levels than previously, were installed. Analysis of samples from these lysimeters indicates that some organic material had moved to considerable depth beneath the pit. Dumping of organic solvents in the pit has been stopped and the steady decrease in organic content in the lysimeter samples bears out this fact. Samples collected all through 1974 indicate that the amount of organic solvent which might have reached the water table was very small indeed. No trace of organic material was found in Well #1 (the nearest well downstream from the pit) during this time.

The very heavy rains of spring and summer 1975 have apparently been responsible for the very small amount of organic material which has just recently been found in Well #1. The rain has probably washed the residue of the organic matter in the pit through the underlying sand to the water table. The actual concentration of solvent intercepted by the lysimeters is still quite low, but the sheer quantity of water passing through the pit is probably responsible for finally bringing a measurable concentration into the ground water. It is noteworthy that groundwater recharge has been recorded this spring, the first time in several years.

Since organic matter has been detected in the ground water, it will be necessary to maintain the monitoring activities at least until the extent of contamination is established. It would be advisable to sample Wells #1, 2, and 4 as well as whichever lysimeters are still working on a biweekly basis, at least until a prolonged dry spell reduces the infiltration of water into the area beneath the pit. At that point the monitoring activity could be cut back considerably (bimonthly or less), but should be maintained as long as any organic material is found in Well #1.

It is level of contamination in Well #1 remains very low and assuming that contamination has not spread to Well #2, it should not be necessary to begin continuous pumping to keep the organic matter from reaching other water supplies. If either of the above conditions changes, the situation will have to be reviewed.

Organics in Lysimeters and Wells, ppm as phenol

. Date	5 ft. 1	ysimeter	<u>11 ft.</u>	<u>12 ft.</u>	13 ft.*
7-19-72	7,0	50	6,130	600	
7-28-72	11,2	•	9,610	528	
8-16-72	6,9		11,350	2,360	
8-31-72	7,6		12,780	167	5
0-31-72	7,0	40			
		,		ıncon tamina ted o	control lys.
	351	'د د	39′	54	
Date	Lys. 1	Lys. 2	<u>Lys. 3</u>	<u>Lys. 5</u>	Well #1
12-10-73	87	÷ <u>-</u>			
1-19-74				700	
1-25-74			48	445	
3-8-74		40	66		. 5
3-11-74		80		220	5
3-13-74					. 5
3-15-74				296	. 1
3-18-74					1
3-26-74				269	1
3-30-74		91			1
4-5-74	72 ·	82			1
4-13-74		91			1
4-20-74		84			. 1
4-26-74		62			1.
5-3-74		56			î
5-19-74		50			1.
5-24-74		42			1
5-31-74		65			1
6-11-74	6	0.5			1
6-20-74	61				1
7-8-74	OL				
7-24-74		21			1
8-11-74		21			1
8-18-74		11			1
9-13-74			•	, 20	1
9-25-74		13		. 39	1
10-5-74		r	-		• 1
10-17-74		5			1
11-3-74		11			1
11-3-74		5		32	1
11-16-74		3		9	1
11-22-74		11 _			1
12-8-74					1
/ 20 75		0.0			1.
4-28-75	*·•	32		_	1
		33		70	1
5-3-75 5-10-75		14		r	1
		1		,	1
5-17-75		8			1
6-6-75		6			2
6-22-75		8			4

The pH of all lysimeter and well samples is above 7 (basic) as expected for this type of soil, with the exception of lysimeter samples taken directly beneath the pit in 1972.

DCH

July 23, 1976

Office Memorandum

From: Fay Thompson, Department of Environmental Health and Safety

Subject: Observation Wells at Rosemount

Monitoring wells at the hazardous waste disposal site at Rosemount have been sampled as scheduled during the last few months. The water has been analyzed for total organics with the following results.

Total Organics as phenol

April 2, 1976				:					•	
Well #1			7.5			1.	*	. 5	ppn	
Well #4			3		-	4			ppm	
. <u> </u>		,				4				
May 2, 1976			64		7					
Well #1			44.			1	*	5	ppm	
Well #4						.•			ppm	
				÷	<u>(</u> . 7.	141				
July 13, 1976				-						
Well #1							<	-5	ppm	
Well #4							€	5	ppm	

The sensitivity of the test is poorer than on previous samples because of an instrument malfunction.

FT:le

cc: Mr. Robert Reid

LABORATORY FORM

(BULK SAMPLES)

				DATE	23-19	
NAME OF SENDER Ste	ve Bar	lar				
ADDRESS Rosemoun						
PHONE #						
	S	AMPLE INF	ORMATION			
CONSTITUENT	со	NCENTRATI	ON			
:	mg/2	(2)	(3)	(4)	(5)	(6)
1. total dissilved	436	508	296	340		
1. tota (dissilved Solids (mg/c) 2. pH	1.2	7.2	8.7	7.2		4'
5. total Higherarbons	<u> </u>	4	4	4		
4				•		
5						
6						
7						
8						
9						
10						
	S A1	אינו אינוע	TIFICATION		-	
(1) D 3 F .	SA:	FILLS IDEN	TITICATION			
(1) Din, # (2) in mp # 2						
(3) F 11 #3						
(3) Fains #3						· · · · · · · · · · · · · · · · · · ·
			·			<u></u>
(5)						
COMMENTS:						
COMMENTS:						

Rosemount Hazardous Worte Sete

agril 1982

Total organis as ghenol

Well "4

<1 > > m

april 1983

Well # 4

<2 ppm <2 ppm

	*			*		*	*	*	*			*	*	*		*		*	*	*	*				*	*				-	(0	2 <u>-</u>
P	1, 2-DICHLOROBENZENE	1, 1, 2-TRICH	PENTACHLOROETHANE	1, 1, 2, 2-TETRACHLORDETHANE	1, 1, 1, 2-TETRACHLORDETHANE	2-CHLORDETHYLVINYL ETHER	CIS-1, 3-DICHLORD-1-PROPENE	CHLORODIBROMOMETHANE	1, 1, 2-TRICHLORDETHYLENE	1, 1-DICHLORO-1-PROPENE	2, 3-DICHLORO-1-PROPENE	BROMODICHLOROMETHANE	1, 1, 1-TRICHLORDETHANE	1, 2-DICHLOR	CIS-1, 2-DICHLOROETHYLENE	1, 1-DICHLOROETHANE	~~~	METHYLENE C	CHLORDETHANE	VINYL CHLORIDE	CHLOROMETHANE		M-XYLENE	CUMENE	TOLUENE	BENZENE	ETHYL ETHER	ACETONE		FIELD BLANK	SAMPLE NUMBER	Monitoring Well #1
PEAK	Nago		ETHA	RACH	RACH	IATA	프뮤	NOM TO A	רסגם	0-1-	0-1-		LORD	DETH	HUDR	DETH	m	CHLORIDE	म	IDE	m									*		#1
DETECTED	ZENE	1, 1, 2-TRICHLOROTRIFLUOROETHANE	ZM .	LORDETHANE	LOROETHANE	NYL ETHER	O-1-PROPENE	THANE	ETHYLENE	PROPENE	PROPENE	THANE	ETHANE	ANE	DETHYLENE	ANI	•	IDE												53015.	53007.	
BELOW		ANT																	_	_										Ċ		
표	^	^	^	^	^	^	^	^		^	^	^	P.	^	^	^	^	<u>^</u> _	Z	N N	N N		^	^	^	^	^	^	Z	/MN E	VOLAT	MI NNE
SS37,	1.0	0.50	Ŋ	ຸນ	0.20	1.0	0.20	1.0	0.30	o. 20	0.20	0.50	0. 20	0.20	0.20	0.20	0.50	1.0				HALOGENATED	0.50	0.50	0.50		_	10.	NON-HALOGENATED	U/MN DISPOSAL/EXCHANGE	VOLATILE HYDROCARBONS	MINNESOTA DEPARTMENT SECTION OF ANALYTICAL
THAN	7/50	7/e/L	חפיור	U@/L	1/ 0 0	1/80	7/50	UG/L	1/ BO	7/ ₉ 0	U6/L	U9/L	1/en	U6/L	1/90	1/ e/	1/9V	U6/L				NATED	U@/L	U6/L	U6/L	U0/L	UG/L	UG/L)GENAT	IL/EXC	DROCA PRIOR	H PARTI
THAN'VALUE ('LESS	* 1,4-DICHLOROBENZENE				1, 2, 3-TRICHLOROPROPANE	* BROMOFORM	1,2-DIBROMOETHANE	* 1, 1, 2-TRICHLOROETHANE	.1, 3-DICHLOROPROPANE	* TRANS-1, 3-DICHLORG	* 1,2-DICHLOROPROPANE	DICHLOROACETONITRILE	* CARBON TETRACHLORI	DIBROMOMETHANE	* CHLOROFORM	* TRANS-1, 2-DICHLORD	* 1, 1-DICHLOROETHYLENE	* TRICHLOROFLUGROMETHANE	* DICHLOROFLUOROMETHANE	* BROMOMETHANE	DICHLORODIFLUOROMETHANE	ĉ	P-XYLENE	O-XYLENE	П	ISCBUTYL	METHYL ETHYL KETONE	TETRAHYDROFURAN	ED (CODE, 468)	HANGE PROGRAM	DROCARBONS IN WATER PRIORITY POLLUTANT)	MINNESOTA DEPARTMENT OF HEALTH SECTION OF ANALYTICAL SERVICES
THAN'	ń	ń	•	RACHLOROETHYLEVII	PANE			ANE	ń	ICHLORO-1-PROPESE	ŕ		I DE			ICHLOROETHYLENE	SNE	HANE			THANE					KETONE	ń			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	त्म ।	DATE
	^	^	^	^	^	^	^	^	^	^	^	^		^		^	^	<u>^</u>	N N	Z	N A		^	^	^	^	^	^		, נו	35.	Ħ
	1.0	1.0	0.50	ហ		1.0	1.0	0.20	μ	0.20		0.50	0. 20	1.0	2.90	0.20		0.20					0, 50	0.50	0.50	1.0	វ គ្គា •	Ċ.		ħ) t	6 26
	1/en	UG/L	しゆノト	UG/L	חפ/ר	UG/L	U6/L	1/60	U6/L	U9/L	UG/L	U \$/L	UG/L	UG/L	1/も7	UG/L	U@/L	U6/ L					J/60	7/ 0 0		U@/L	U6/L	U9/L	•	+ 50.4	1984	1984

P< PEAK DETECTED BELDW	* CHLOROMETHANE * VINYL CHLORIDE * CHLOROETHANE * CHLOROETHANE * CHLOROETHANE * I, 1-DICHLOROETHANE * 1, 2-DICHLOROETHANE * 1, 1, 1-TRICHLOROETHANE 2, 3-DICHLORO-1-PROPENE * 1, 1, 2-TRICHLORO-1-PROPENE * CHLORODIBROMOMETHANE * CIS-1, 3-DICHLORO-1-PROPENE * CIS-1, 3-DICHLORO-1-PROPENE * CIS-1, 3-DICHLORO-1-PROPENE * CIS-1, 3-DICHLOROETHANE * 1, 1, 2-TETRACHLOROETHANE * 1, 1, 2, 2-TETRACHLOROETHANE * 1, 1, 2-TRICHLOROETHANE * 1, 1, 2-TRICHLOROETHANE * 1, 1, 2-TRICHLOROETHANE * 1, 1, 2-TRICHLOROETHANE * 1, 2-DICHLOROBENZENE	ACETONE ETHYL ETHER * BENZENE * TOLUENE CUMENE M-XYLENE	Monitoring Well #2 SAMPLE NUMBER 53009. FIELD BLANK # 53015.
-DW THE	m	^^^^^	MINN SECT (* I
'LESS THAN'VALUE ('LESS THAN'	* * * * * * * * * * * * * * * * * * *	NON-HALOGENATED (CODE 462) 10. UG/L TETRAHYDROFURAN 1.0 UG/L METHYL ETHYL KETONE 0.50 UG/L METHYL ISOBUTYL KETONE 0.50 UG/L * ETHYLBENZENE 0.50 UG/L O-XYLENE 0.50 UG/L P-XYLENE HALOGENATED (CODE 464)	MINNESOTA DEPARTMENT OF HEALTH SECTION OF ANALYTICAL SERVICES VOLATILE HYDROCARBONS IN WATER (* DENOTES PRIORITY POLLUTANT) D/MN DISPOSAL/EXCHANGE PROGRAM
ZED'	YCENE NA		DATE DATE SAMPLED DATE ANALYZED
	0.20 U6/L 1.0 U6/L 1.0 U6/L 1.0 U6/L 1.0 U6/L	5. Ue/L 5. Ue/L 0.50 Ue/L 0.50 Ue/L 0.50 Ue/L	E 6 26 1984 D . 6 15 1984 D 6 25 1984

1.0 UG/L	`			NOT ANALYZED:	* 1,2-DICHLOROBENZENE NA 'NOT AN
1.0 U@/L	^	1, 3-DICHLOR	0.50 UG/L *	1, 1, 2-TRICHLOROTRIFLUORGETHANE (1, 1, 2-TRICHLOR
0.50 UG/L	~		. UG/L	ANE	PENTACHLOROETHANE
2. UG/L	YLENE <	1, 1, 2, 2-TET	2. UG/L *	HLOROETHANE ^	* 1, 1, 2, 2-TETRACHLOROETHANE
•	^	1, 2, 3-TRICHLOROPROPANE		HLOROETHANE <	1, 1, 1, 2-TETRACHLORDETHANE
	^ -	BROMOFORM		INYL ETHER	
	~ ~		วัล - เ		* OTO-1.3-DTOHIORO-1-BROPHNH
0.20 00/1	~ ^		1.0 U0/L *	TTHANK (* 01 00001000M0M0110AN0 * 01 00001000M0M0111AN0
	ROPENE	TRANS-1, 3-D			1, 1-DICHLORO-1-PROPENE
S	~	1, 2-DICHLOR	UG/L	-PROPENE	2, 3-DICHLORO-1
Ö	^	DICHLOROACETONITRILE		ETHANE	* BROMODICHLOROMETHANE
	^	CARBON TETR	0.20 UG/L *	OETHANE <	* 1,1,1-TRICHLORDETHANE
0	~	DIBROMOMETHANE		HAND · · ·	* 1, 2-DICHLOROETHANE
20	~	CHLOROFORM		ROETHYLENE	CIS-1, Z-DICHLOROETHYLENE
N N	LENE		U6/L	HANE	* 1, 1-DICHLOROETHANE
0		1, 1-DICHLOR	U6/L	^	ALLYLCHLORIDE
0.20 UG/L			1,5 UG/L *	ORIDE	Ē
	N A		*	Z	* CHLOROETHANE
		BROMOMETHAN	*	NA	* VINYL CHLORIDE
	m • N	DICHLORODIFLUOROMETHANE		Z	* CHLOROMETHANE
		(CODE 464)	HALOGENATED (
0.50 UG/L	^	P-XYLENE		^	M-XYLENE
0.50 UG/L	^	O-XYLENE		^	CUMENE
0.50 UG/L	^		0.50 UG/L *	^	* TOLUENE
1.0 UG/L	^			^	* BENZENE
5. UG/L	^	METHYL ETHYL KETONE	1.0 UG/L	^	ETHYL ETHER
5. UG/L	^	TETRAHYDROFURAN	10. UG/L	^	ACETONE
		(CODE 462)	NON-HALOGENATED		
		NGE PROGRAM	U/MN DISPOSAL/EXCHANGE	53015. U/MN	FIELD BLANK #
6 15 1984	DATE SAMPLED .	IN WATER DLLUTANT)	VOLATILE HYDROCARBONS (* DENOTES PRIORITY PO	53011. (*)	SAMPLE NUMBER
6 26 1984	DATE	CAL SERVICES	MINNESOTA DEPARTMENT SECTION OF ANALYTICAL		Monitoring Well #4

PRIORITY POLLUTANT) DATE SAMPLED . DATE ANALYZED L/EXCHANGE PROGRAM
--

(117) (117) (117) (117) (117)

NA 'NOT ANALYZED'	* 1,2-DICHLOROBENZENE	PENTACHLOROETHANE	* 1, 1, 2, 2-TETRACHLORDETHANE	1, 1, 1, 2-TETRACHLOROETHANE	* 2-CHLOROETHYLVINYL ETHER	* CIS-1, 3-DICHLORO-1-PROPENE	* CHLORODIBROMOMETHANE	* 1,1,2-TRICHLORDETHYLENE	1, 1-DICHLORO-1-PROPENE	2,3-DICHLORD-1-PROPENE	* BROMODICHLOROMETHANE	* 1,1,1-TRICHLORDETHANE	* 1, 2-DICHLORDETHANE	CIS-1, 2-DICHLOROETHYLENE	* 1,1-DICHLOROETHANE		* METHYLENE CHLORIDE		•	CHLORO				* - CFCUNE	* GUN/CUNE		ACETONE		FIELD BLANK # 53015.	SAMPLE NUMBER 53012.		Main Well #2
	^ ^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^		Z D	Z	N		^	^	^	^	^	^	, N	UMN D	(* DENOT		MINNE
	1.0 UG/L	'n	2. UG/L						20			0, 20 UG/L	0.20 UG/L	0.20 UG/L		0.50 UG/L	1.6 UG/L				HALOGENATED	0.50 UG/L	0.50 UG/L		(J	1.0 UG/L	10. UG/L	NON-HALOGENATED	U/MN DISPOSAL/EXCHANGE	ᇟ귀		MINNESOTA DEPARTMENT SECTION OF ANALYTICAL
CESS THAN	* 1,3-DICHLOROBENZENE * 1,4-DICHLOROBENZENE	CHLOROBENZE	* 1, 1, 2, 2-TETRACHLORDETHYLENE	1, 2, 3-TRICHLOROPROPANE		1, 2-DIBRUMOETHANE	* 1, 1, 2-TRICHLOROETHANE	1, 3-DICHI OROPROPANE		* 1, 2-DICHLOROPROPANE	DICHLOROACETONITRILE	* CARBON TETRACHLORIDE	DIBROMOMETHANE	* CHLOROFORM	* TRANS-1, 2-DICHLOROETHYLENE		* TRICHLOROFLUOROMETHANE	* DICHLOROFLUOROMETHANE	* BROMOMETHANE	DICHLORODIFLUOROMETHANE	(CODE 464)	P-XYLENE	D-XYLENE	* ETHYLBENZENE	METHYL ISOBUTYL KETONE	METHYL ETHYL KETONE	ĭ	ED (CODE 462)	PROGRAM	IN WATER OLLUTANT)		MENT OF HEALTH
•	^^	•	YLENE	~ .	~ .	~ .	~ -		ROPENE	~ -	~ .	~ .	~ .	•	LENE			×.		in .		^	^	^	^	^	^		מאות מאצר ד בקנט	DATE SAMPLED .		DATE
	00		2. U6/L		1.0 00/		0.20 Ue/L	j	0.20 00/1				0	D I	o C	บ ! 0 !	0.20 Ue/L					50			-	5. UG/L	5. UG/L		0 NU 1784	i Cit	-	6 26 1984

res EAs US

	*	:	*	*	*	*	*		*	*	*		*	¥	* *	*	*				*	*				-T]	ίυ		.>.
NA '	1, 2-DICHLOROBENZENE	PENTACHLORDETHANE	1, 1, 0, 0, THIRACH CROHITEANN	2-CHCOROETHYLVINYL	CIS-1, 3-DICHLORD-1-PROPENE	CHLORODIBROMOMETHANE	1, 1, 2-TRICHLORDETHYLENE	*	BROMODICHLOROMETHANE	1, 1, 1-TRICHLORGETHANE	1, 2-DICHLORDETHANE	CIS-1, 2-DICHLORDETHYLENE	1.1-DICH DROFTHANE	ALL ALCHIORIDE	CHLOROETHANE	VINYE CHECKIDE			M-XYLENE	CUMENE	TOLUENE	BENZENE	ETHYL ETHER	ACETONE		IELD BLANK #	SAMPLE NUMBER		Agricultural Engineering Well
'NOT ANALYZED'	1, 1, 2—TRICHLOROTRIFLUOROETHANE 1, 2—DICHLOROBENZENE	TANE TO THE TENER	יאו ספסקדייאאר	/INYL ETHER	DRO-1-PROPENE	THANE	COETHYLENE		IN HAND	COETHANE	HANE	DROMTHYLENE	HANF	בת דירם		•	•									53015.	53013.		eering Well
	^ ^	^ ^	~ ^	. ^	^	^	^ ^	~ ^	^	^	^	^ -	~ ~	~	Z	Z	Z		^	^	^	^	^	^	z	U M N N	* C		MINN
	0.50 UG/L			: ရ	0.20 UG/L		0.20 UG/L) C				N I) (0.50 06/1	n			HALOGENATED			0.50 UG/L		~	10. UG/L	NON-HALOGENATED	DISPOSAL/EXCHANGE	(* DENOTES PRIORITY P		MINNESOTA DEPARTMENT :
, CESS .	* 1,3-DICHLOROBENZENE * 1,4-DICHLOROBENZENE		* 1.4.0.0.THETOACE DOOMHUS MAN	* BROMOFORM	1, 2-DIBRUMOETHANE	* 1, 1, 2-TRICHLORDETHANE	1,3-DICHLOROPROPANE	* 10 X-01010101010101010101010101010101010101		* CARBON TETRACHLORIDE			* TRANSHI. UHDION DROFTHY FNE	* 1.140TOBI OBORTEYI RAR	-			(CODE 464)	P-XYLENE	O-XYLENE	ENZENE	.naosi	METHYL ETHYL KETONE	Ä	ED (CODE 462)	HANGE PROGRAM	PRIORITY POLLUTANT)		MINNESOTA DEPARTMENT OF HEALTH SECTION OF ANALYTICAL SERVICES
THAN '	~ ^		TANE (~	ANE			' m)E	•				ANE NA		•		~	~	•	TONE <	(I)	~	·	DATE ANALYZED	DATE SAMPLED		DATE
		·				0	c	o c	00	0	1	0 0)	٠ •		-	_	•	•	0	0								0.
	1.0 UG	0.0		0			00 °E					0 0	0 6	א ני כ)					0.50 UG		_		5. U		i.	i G		27
	Ne/L	06/L	10 C	1, en	U6/L	U 9/L	00/L	\ \ \ \	16/L	UG/L	>	U@/L	50 Y	- CO / C	<u> </u>				UG/L	UG/L	UG/L	U6/L	U6/L	U6/L		764	1984		1984
																												1 11	//POOOO

		* * * * * * * * *	* *	ာ ဖွ
N A	CHLORODIBROMOMETHANE CIS-1,3-DICHLORO-1-P CIS-1,3-DICHLORO-1-P 2-CHLOROETHYLVINYL E 1,1,2-TETRACHLOROE 1,1,2-Z-TETRACHLOROE PENTACHLOROETHANE 1,1,2-TRICHLOROTRIFL 1,2-DICHLOROBENZENE	VINYL CHLORIDE CHLOROETHANE CHLOROETHANE METHYLENE CHLORIDE ALLYCCHLORIDE, 1, 1-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 1-TRICHLOROETHANE BROMODICHLORO—1-PROPEN 1, 1-DICHLORO—1-PROPEN 1, 1, 2-TRICHLOROETHYLE 1, 1, 2-TRICHLOROETHYLE	ACETONE ETHYL ETHER BENZENE TOLUENE CUMENE M-XYLENE	Poultry Well SAMPLE NUMBER FIELD BLANK #
'NOT ANALYZED'	CHLORODIBROMOMETHANE CIS-1,3-DICHLORO-1-PROPENE 2-CHLOROETHYLVINYL ETHER 1,1,1,2-TETRACHLOROETHANE 1,1,2,2-TETRACHLOROETHANE PENTACHLOROETHANE 1,1,2-TRICHLOROTRIFLUOROETHANE 1,1,2-TRICHLOROTRIFLUOROETHANE	VINYL CHLORIDE CHLOROETHANE CHLOROETHANE METHYLENE CHLORIDE ALLYCCHLORIDE, 1, 1-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 1-TRICHLOROETHANE BROMODICHLORO-1-PROPENE 1, 1-DICHLORO-1-PROPENE 1, 1, 2-TRICHLOROETHYLENE		ER 53014.
ZED′	PENE ANE ANE ANE ANE			O/MN (* 1 ODL SEC: MINI
	~~~~~~	^^^^^ <b>/</b>	Z	
		1.0 UG/L 0.50 UG/L 0.20 UG/L 0.20 UG/L 0.20 UG/L 0.20 UG/L 0.20 UG/L 0.20 UG/L	NON-HALOGENATED  10. UG/L  1.0 UG/L  0.50 UG/L  0.50 UG/L  HALOGENATED (	MINNESOTA DEPARTMENT SECTION OF ANALYTICAL VOLATILE HYDROCARBONS (* DENOTES PRIORITY POLYMN DISPOSAL/EXCHANGE
, 'LESS'.	* 1, 1, 2-TRICHLOROETHANE  1, 2-DIBROMOETHANE  * BROMOFORM  1, 2, 3-TRICHLOROPROPANE  * 1, 1, 2, 2-TETRACHLOROETH  * CHLOROBENZENE  * 1, 4-DICHLOROBENZENE  * 1, 4-DICHLOROBENZENE	* BROMOMETHANE  * BROMOMETHANE  * DICHLOROFLUOROMETHANE  * TRICHLOROFLUOROMETHANE  * 1, 1-DICHLOROFLUOROMETHANE  * 1, 1-DICHLOROFTHYLENE  * TRANS-1, 2-DICHLOROFTHYL  * CARBON TETRACHLORIDE  * CARBON TETRACHLORIDE  * CARBON TETRACHLORIDE  * TRANS-1, 3-DICHLORO-1-PR  1, 3-DICHLOROPROPANE	TETRAHYDROFURAN METHYL ETHYL KETHYL KETHYL KETHYL KETHYL KETHYL BENZENE D-XYLENE P-XYLENE P-XYLENE CODE 464)	MENT OF HEALTH TICAL SERVICES RBONS IN WATER ITY POLLUTANT)
THAN '	OROETHANE  THANE  OROPROPANE  ACHLOROETHYLENE  BENZENE  OBENZENE	ROMETHANE NA ROMETHANE OROMETHANE	RETONE C	DATE DATE SAMPLED DATE ANALYZED
			,	•
	0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0. 20. 0.		0000 0000	oo o
				21 B 55 6 11 1
	2000 2000 2000 2000 2000 2000 2000 200	2	00/L 00/L 00/L 00/L 00/L	1984 1984 1984
	٠.			LIMPOOO

1 1 . 2 . . . 32 . .

NA 'NOT ANALYZED	* CHLOROMETHANE  * VINYL CHLORIDE  * CHLOROETHANE  * CHLOROETHANE  * METHYLENE CHLORIDE  * ALLYLCHLORIDE  * 1, 1-DICHLOROETHANE  CIS-1, 2-DICHLOROETHANE  * 1, 1, 1-TRICHLOROETHANE  2, 3-DICHLORO-1-PROPENE  1, 1, 2-TRICHLOROETHANE  * CHLORODIBROMMETHANE  * CHLORODIBROMMETHANE  * CIS-1, 3-DICHLORO-1-PROPENE  * CIS-1, 3-DICHLORO-1-PROPENE  * CIS-1, 3-DICHLOROETHANE  * 1, 1, 2-TETRACHLOROETHANE  1, 1, 1, 2-TETRACHLOROETHANE  1, 1, 2-TRICHLOROTRIFLUOROETHANE  1, 1, 2-TRICHLOROBENZENE	SAMPLE NUMBER 53015.  FIELD BLANK # 53015.  ACETONE ETHYL ETHER * BENZENE * TOLUENE CUMENE CUMENE M-XYLENE	Field Blank
0,	HANNE AND	VOLATILE (* DENOT U/MN DISP NON-H ( 1 ( 0. ( 0. ( 0. ( 0. HAL	MINNE
	2.3 U@/L 0.50 U@/L 0.20 U@/L 0.20 U@/L 0.20 U@/L 0.20 U@/L 0.20 U@/L 0.20 U@/L 1.0 U@/L 0.50 U@/L 1.0 U@/L	VOLATILE HYDROCARBONS (* DENOTES PRIORITY P  U/MN DISPOSAL/EXCHANGE  NON-HALOGENATED (C  1.0 UG/L ME  0.50 UG/L ME  0.50 UG/L ME  0.50 UG/L ME  1.0	MINNESOTA DEPARTMENT :
( 'LESS 1	DICHLORODIFLUOROMETHANE  * BROMOMETHANE  * TRICHLOROFLUOROMETHANE  * 1,1-DICHLOROFLUOROMETHANE  * 1,1-DICHLOROETHYLENE  * TRANS-1,2-DICHLOROETHYLENE  * CARBON TETRACHLORIDE  DICHLOROFORM  DIBROMOMETHANE  * 1,2-DICHLOROPROPANE  1,3-DICHLOROPROPANE  1,3-DICHLOROPROPANE  * 1,1,2-TRICHLOROPROPANE  * 1,1,2,3-TRICHLOROPROPANE  * 1,1,2,3-TRICHLOROBENZENE	IN WATE DLLUTANT PROGRAM ODE 462) THYL EAHYDPOI THYL ETH THYL ISOI THYL ISOI THYL ENE XYLENE XYLENE XYLENE XYLENE	DEPARTMENT OF HEALTH
THAN,	THANE NA  NA  NA  HANE  NA  CETHYLENE  OBTHYLENE  OBTHY	ATE SAM TE ANAL	DATE
	0.20 U6/L 0.20 U6/L 0.20 U6/L 0.20 U6/L 0.20 U6/L 0.20 U6/L 1.0 U6/L 1.0 U6/L 1.0 U6/L 1.0 U6/L 1.0 U6/L	. 6 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 26 1984



Department of Environmental Health and Safety Boynton Health Service, Room W-140 410 Church Street S.E. Minneapolis, Minnesota 55455

(612) 373-3167

June 18, 1984

#### **MEMORANDUM**

T0:

Dr. Clifford Wilcox, Superintendent, Agriculture

Experiment Station, 1605-160th Street West, Rosemount.

MN 55068

FROM:

Kent A. Rees, Senior Environmental Health Specialist Department of Environmental Health and Safety

SUBJECT:

Bacteriological Water Sampling, Agriculture Experiment

Station

IThis is to inform you of the results of bacteriological examination of water smaples taken at various locations at the experiment station on June 14, 1984. The results are listed below for your information.

Sampling Point	Coliform Bacteria/100mls
Agriculture Engineering	<b>&lt;</b> 1
Station Office	<b>&lt;</b> 1
Shop	<b>&lt;</b> 1
South Beef	<1
Forage Farm	<1
Plant Pathology	<1
Dairy Farm	<1
Agronomy Farm	<1
Poultry (new)	<b>&lt;</b> 1
Poultry (old)	<1
North Beef (new)	<1
North Beef (old)	<1

The absence of coliform indicates that the water is of satisfactory bacteriological quality for drinking purposes in accordance with the EPA National Interim Primary Drinking Water Regulations. Sampling and analyses were conducted in accordance with the 15th edition of Standards Methods for the Examination of Water and Waste Water.

KAR/dr

MEH 210	A Com.
---------	--------

	DIVISION	OF ENVIRO	MENT OF HEADNENTAL HE	ALTH DON'T of		atal Health m
Samples Collected By <u>Hay</u>	t q Reer	ANALYTICA		410 Cha 17/15	inh Lt Mr. 5533	
ield Number Town, Co	ovaty, Etc.		Sampling	Point and Sou	rce of Sample	
2 Roseman	eart	Rosemu	unt Res	end Off	i.	
7	· · · · · · · · · · · · · · · · · · ·	1		tion offi		
13 Carner	G.3	Sandas	ingae 42	aparatus.	<del>?</del>	
e f				,		
			T T			
nis line for Lab. use only.  ample Number  ate Collected	25843	25864	25865	c d	<u>[ e</u>	<u>If</u>
ime Collected  amperature OF the						
ate Received by Lab. ( ). Difform ( M.P.N. per 100 ml.	16-26.77					
roup Con. Comp. Comp. M.F.C. per 100 ml.					CONPLE	
					NOV 1	1977
al Solids artidity					ANALYTICAL	EKAICEZ
etal hardness as CaCO3 kalinity as CaCO3						
velue os						
nganese Noride sidual Chlorine						
lphate uoride						
tal Phosphorus trite Nitrogen						
trate Nitrogen + W _ /V  thylene Blue Active Sub. as ABS	6.4	2.4	2.4			
edium as CaCO3 edium etassium						:
ec. Cond. µmhos'cm @ 25 °C.						
VV A						

¥.